Make AE⊥BC at point E, AF⊥CD at point F, and cross the extension line of CD.
Then < EAF = 90.
∫∠ Bad =90
∴∠DAF=∠BAE
AB = AD,∠AEB=∠F=90
∴△ABE≌△ADF
∴AE=AF,S△ABE=S△ADF
∴ Quadrilateral AECF is a square, S quadrilateral ABCD=S square AECF=24.
∴AE=2√6
∴AC=√2AE=4√3cm