So, S=AG? AM = a2-40a(sinθ+cosθ)+ 1600 sinθ? cosθ
Let t = sin θ+cos θ = 2 sin (θ+45), then sinθcosθ=t2? 12,
So S=a2-40at+ 1600t2? 12=800(t-a40)2+a22-800。
∵00≤θ≤900
∴ 1≤t≤2
∴ When t= 1, that is, θ = 45, S has a maximum value of a2-40a.
At this time, point H is at the midpoint of EF, and the maximum rectangular area is a2-40a. ..