∴AB-AG=BC-EC,
That is BG=BE,
∴∠BGE=45,
∴∠AGE= 135。
∫CP is the bisector of the outer corner,
∴∠DCF=45,
∴∠ECF= 135,
∴∠AGE=∠ECF,
∠∠AEB+∠BAE = 90,∠AEB+∠CEF=90,
∠BAE=∠CEF,
In △AGE and △ECF, ∠ age = ∠ ecfag = EC ∠ BAE = ∠ cef,
∴△AGE≌△ECF(ASA),
∴ae=ef;
(2)① You can prove the same reason as (1). When e is not the midpoint, AE=EF.
∴ in △ABE and △ENF, ∠ BAE = ∠ CEF ∠ B = ∠ CNF = 90 AE = EF,
∴△ABE≌△ENF(AAS),
∴FN=BE=x,
And ∵BE=x, BC=4,
∴EC=4-x,
∴y= 12×(4-x)x,
∴y=- 12x2+2x (0