arctanx =∫ 1/( 1 x 2)dx = x/( 1 x 2)2∫(x 2)/( 1 x 2)2dx-
arctanx = x/( 1 x^2)2(∫( 1 x^2)/( 1 x^2)^2dx-∫ 1/( 1 x^2)^2dx)
arctanx = x/( 1 x^2)2(∫ 1/( 1 x^2)dx-∫ 1/( 1 x^2)^2dx)
arctanx = x/( 1 x^2)2 arctanx-2∫ 1/( 1 x^2)^2dx
∫1/(1x 2) 2dx = (x/(1x 2) arctangent) /2
∫(e^2)( 1 x^2)^(-2)dx=(e^2)∫ 1/( 1 x^2)^2dx=(e^2)(x/( 1 x^2)arctanx)/2