1/√(n^2+ 1)+ 1/√(n^2+2)+....+ 1/√(n^2+n)>; n/√(n^2+n)
That is,1√ (N2+1)+1√ (N2+2)+...+1√ (N2+n) in n/√ (N2+n)
1/√( 1+ 1/n)& lt; 1/√(n^2+ 1)+ 1/√(n^2+2)+....+ 1/√(n^2+n)<; 1/√( 1+ 1/n^2)
In n- >, n/√ (N2+n) =1√ (1+1/n); ∝ Yes 1
In n- >, n/√ (N2+1) =1√ (1+1/N2); ∝ Also 1
Then1/√ (N2+1)+1√ (N2+2)+...+1√ (N2+n) is in it, and in n->; Of course it is also 1.
How can it be 0?