Solution: extend the cross CD of GH to n, then NH =40sin θ and CN =40cos θ.
∴ HM = ND =50-40cos θ,AM =50-40sin θ。
So s = (50-40 cos θ) (50-40 sin θ) =1
100[25-20(sinθ+cosθ)+ 16 sinθcosθ](0≤θ≤)。
Let t =sin θ +cos θ = sin( θ+),
Then sin θ cos θ =, and t ∈ [1,].
∴s = 100[25-20t+8(T2- 1)]= 800(t-)2+450。
T ∈ [1,] ∴ When t = 1, S m a x =500,
At this time, sin( θ+)= 1 sin( θ+)=.
∵≤θ +≤π, ∴θ+= or π,
I.e. θ =0 or θ =.
A: When the H point is at the terminal E or F, the fitness room has the largest area, with the largest area of 500㎡.