Because DN=x, NH=40-x, NA=60-x,
Because NHHG=NAAM,
So 40? x 10=60? XAM, so am = 600? 10x40? X…(2 points)
Cross m is MT∑BC, CD is t,
SMBCDW=SMBCT+SMTDN=(40? AM)×60+ 12(x+60)×AM,
So y = (40? 600? 10x40? x)×60+ 12×(x+60)(600? 10x)40? x=2400? 5(60? x)240? X…(7 points)
Because when n and f coincide, AM=AF=30 is suitable for the condition, so X ∈ (0 0,30], …(8 points)
(2)y=2400? 5(60? x)240? x=2400? 5[(40? x)+40040? X+40], …( 10 point)
What about when and only when you are 40? x=40040? X, that is, when X = 20 ∈ (0 0,30), y gets the maximum value of 2000, …( 13 points).
Therefore, when DN=20m, the public fitness square has the largest area of 2000m2...( 14).